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Abstract
The positions of atoms forming a carbon nanotube are usually described by
using a system of generators of the symmetry group. Each atomic position
corresponds to an element of the set Z × {0, 1, . . . , n} × {0, 1}, where n
depends on the considered nanotube. We obtain an alternative, rather different
description by starting from a three-axes description of the honeycomb lattice.
In our mathematical model, which is a factor space defined by an equivalence
relation in the set {(v0, v1, v2) ∈ Z

3 | v0 +v1 +v2 ∈ {0, 1}}, the neighbours of an
atomic position can be described in a simpler way, and the mathematical objects
with geometric or physical significance have a simpler and more symmetric
form. We present some results concerning the linear representations of the
symmetry groups of single-wall carbon nanotubes in order to illustrate the
proposed approach.

PACS numbers: 61.46.+w, 73.63.Fg

1. Introduction

A single-wall carbon nanotube is a cylindrical structure with a diameter of a few nanometres,
periodic along its axis, which can be imagined as a rolled up honeycomb lattice. The high
symmetry of carbon nanotubes has facilitated the theoretical investigation of the physical
phenomena occurring in these materials [1, 8–10, 12–14, 16]. The spatial symmetries
(translations, rotations and screw axes, mirror and glide planes, etc) form a line group, which
is the maximal subgroup of the Euclidean group that leaves the nanotube invariant. The role of
this group is analogous to that of crystallographic space groups in solid-state physics. Some
important properties of the band structure (electronic, phonon, etc) can be directly deduced
from the symmetry groups.

The symmetry group of a carbon nanotube depends on the diameter of the tubule and
on the helical arrangement of the carbon hexagons. The irreducible representations of these
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groups are well known [6, 7, 15], but, generally, equivalent representations offer distinct
formal advantages. A calculation very simple in a representation can become much more
complicated in an equivalent representation. Therefore, we think it is worth looking for new
representations and for new ways to describe the atomic structure of these materials. Our
aim is to present an improved version of the mathematical model proposed in [3] and some
applications illustrating this new approach.

2. Honeycomb lattice in a three-axes description

The vectors corresponding to the vertices of a regular triangle

e0 = (1, 0), e2 = (− 1
2 ,

√
3

2

)
, e3 = (− 1

2 ,−
√

3
2

)
(1)

allow us to define the bijecton

L −→ L : (v0, v1, v2) �→ v0e0 + v1e1 + v2e2 (2)

from the set

L = {v = (v0, v1, v2) ∈ Z
3 | v0 + v1 + v2 ∈ {0; 1}} (3)

to the set L of all the vertices of a honeycomb lattice. The subset L of Z
3 becomes in this way

a mathematical model for the honeycomb lattice. One can remark that

L = T ∪ (T + (1, 0, 0)), (4)

where

T = {v = (v0, v1, v2) ∈ Z
3 | v0 + v1 + v2 = 0}. (5)

The mapping

d : L × L −→ N, d(v, u) = |v0 − u0| + |v1 − u1| + |v2 − u2| (6)

is a distance on L, and u is a neighbour of order l of v if d(v, u) = l. The nearest neighbours
of v are

v0 = (v0 + ε(v), v1, v2)

v1 = (v0, v1 + ε(v), v2) where ε(v) = (−1)v0+v1+v2

v2 = (v0, v1, v2 + ε(v)),

(7)

and the six next-to-nearest neighbours of v are the points vij = (vi)j corresponding to all the
pairs (i, j) with i �= j . The symmetry group G of the honeycomb lattice coincides with the
group of all the isometries of the metric space (L, d) and is generated by the transformations

L −→ L : (v0, v1, v2) �→ (v1, v2, v0)

L −→ L : (v0, v1, v2) �→ (v0, v2, v1)

L −→ L : (v0, v1, v2) �→ (−v0 + 1,−v1,−v2).

(8)

The subgroup of translations contained in G corresponds to T :

{u | v ∈ L ⇒ v + u ∈ L} = {u ∈ L | ε(u) = 1} = T . (9)

We can extend the description based on e0, e1, e2 to the whole plane. Each vector v admits
the representation

v = a

2∑
i=0

〈v, ei〉ei with a = 2

3
(10)
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Figure 1. The unit cell of the carbon nanotube with the chiral vector c = (10,−2, −8). In this
case n = 2, c̃ = (5, −1,−4), t = (−1, 3,−2), w = (1, 0,−1) and q̃ = 14.

and the usual scalar product and norm become

〈v, u〉 = a

2∑
i=0

〈v, ei〉〈u, ei〉, ‖v‖ =
√√√√a

2∑
i=0

〈v, ei〉2. (11)

The vectors e0, e1, e2 form a tight frame [2] and a system of coherent vectors [4] in R
2. For

each vector v, the ‘canonical coordinates’

v̂0 = 〈v, e0〉, v̂1 = 〈v, e1〉, v̂2 = 〈v, e2〉 (12)

satisfy the relation v̂0 + v̂1 + v̂2 = 0, and we can identify R
2 with the space

K = {k = (k0, k1, k2) | k0, k1, k2 ∈ R, k0 + k1 + k2 = 0} (13)

by using the linear isomorphism

K −→ R
2 : (k0, k1, k2) �→ a

2∑
i=0

kiei . (14)

The representation of a vector v as a linear combination of e0, e1, e2 is not unique:

v = a

2∑
i=0

v̂iei = a

2∑
i=0

(v̂i + α)ei (15)

for any α ∈ R. All the elements (v0, v1, v2) of the set

{(v̂0 + α, v̂1 + α, v̂2 + α) | α ∈ R}
correspond to the same point of the plane, and

〈k, v〉 = a

2∑
i=0

ki v̂i = a

2∑
i=0

ki(v̂i + α) = a

2∑
i=0

kivi (16)

for all k ∈ K.

3. An alternative mathematical model for carbon nanotubes

A single-wall carbon nanotube can be visualized as the structure obtained by rolling a
honeycomb lattice (which is a mathematical model for a graphene sheet) such that the
endpoints of a translation vector c ∈ T are folded one onto the other (see figure 1). The
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vector c is called the chirality of the tubule. After the graphene sheet rolling, the points
. . . , v − 2c, v − c, v, v + c, v + 2c, . . . are folded one onto the other, for any v ∈ L. Therefore,
each element of the set [v] = v + Zc, that is, each element of the set

[v0, v1, v2] = {(v0, v1, v2) + j (c0, c1, c2) | j ∈ Z} (17)

describes the same point of the nanotube. The subset of the factor space Z
3/Zc,

Lc =
{

[v0, v1, v2] ∈ Z
3

Zc

∣∣∣∣∣ v0 + v1 + v2 ∈ {0; 1}
}

, (18)

can be regarded as a mathematical model for the nanotube of chirality c. A symmetry
transformation L −→ L : v �→ gv of the honeycomb lattice satisfying the relation

[v] = [u] �⇒ [gv] = [gu] (19)

defines a symmetry transformation of nanotube Lc, namely

g : Lc −→ Lc : [v] �→ [gv]. (20)

Each nanotube Lc admits the symmetry transformations:

τ : Lc −→ Lc : [v0, v1, v2] �→ [−v0 + 1,−v1,−v2]

gu : Lc −→ Lc : [v] �→ [v + u] for any u ∈ T .
(21)

Let n be the greatest common divisor of c0, c1, c2, and let c̃ = (c̃0, c̃1, c̃2), where

c̃0 = 1

n
c0, c̃1 = 1

n
c1, c̃2 = 1

n
c2. (22)

The transformation gc̃ represents a rotation of nanotube of angle 2π/n with respect to its axis.
Since

(c2 − c1)c0 + (c0 − c2)c1 + (c1 − c0)c2 = 0 (23)

the vector (c2 − c1, c0 − c2, c1 − c0) is orthogonal to c (it has the direction of nanotube axis).
The transformation gt corresponding to

t = 1

R
(c2 − c1, c0 − c2, c1 − c0), (24)

where

R = gcd{c2 − c1, c0 − c2, c1 − c0} =
{

3n if c̃2 − c̃1 ∈ 3Z

n if c̃2 − c̃1 �∈ 3Z
(25)

represents the shortest pure translation of nanotube. From c0 + c1 + c2 = 0 we get

(c1 − c2)
2 + (c2 − c0)

2 + (c0 − c1)
2 = 3

(
c2

0 + c2
1 + c2

2

)
(26)

that is, R2‖t‖2 = 3‖c‖2, whence

q = 1

R
(
c2

0 + c2
1 + c2

2

) ∈ nZ. (27)

For any u ∈ T the projections of u on c and t can be written as

〈u, c〉
‖c‖2

c =
(

u1
c1 − c0

R
+ u2

c2 − c0

R

)
c

q
,

〈u, t〉
‖t‖2

t =
(
u1

c2

n
− u2

c1

n

) t

q̃
, (28)

where q̃ = q

n
. Since

gcd{(c1 − c0)/R, (c2 − c0)/R} = 1 and gcd{c2/n, c1/n} = 1 (29)
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it follows that the projection of T on c is Z
c
q

, and the projection of T on t is Z
t
q̃

. Let w ∈ T
be the shortest vector with

〈w, t〉
‖t‖2

t = t

q̃
. (30)

From the relation

w = 〈w, c〉
‖c‖2

c +
〈w, t〉
‖t‖2

t (31)

we get [qw] = [nt].
Without loss of generality we can assume c0 > c1 � c2. In the case c1 = c2 we have

an armchair nanotube, and in the case c1 = 0 a zig-zag nanotube. The nanotubes with
0 �= c1 �= c2 are called chiral nanotubes. Our approach works for any single-wall carbon
nanotube, but in this paper we restrict ourselves to chiral nanotubes. The symmetry group Gc

of the nanotube Lc is generated by the transformations � = gc̃, σ = gw and τ :

Gc = 〈�, σ, τ | �σ = σ�, �n = τ 2 = (στ)2 = (�τ)2 = e〉. (32)

For each [v] ∈ Lc, there exist s ∈ Z,m ∈ {0, 1, . . . , n−1} and p ∈ {0; 1} uniquely determined
such that [v] = σ s�mτp[0, 0, 0]. The usual description [5, 15] of the atomic positions of the
atoms forming a carbon nanotube is based on this remark, and the set

{(s,m, p) | s ∈ Z,m ∈ {0, 1, . . . , n − 1}, p ∈ {0, 1}} (33)

is used as a mathematical model. The alternative mathematical model we present in this paper
is Lc.

4. A tight-binding approach to carbon nanotubes

Consider the Hilbert space (l2(Lc), 〈, 〉), where

l2(Lc) =
{

ψ : Lc −→ C

∣∣∣∣∣
∑
v∈Lc

|ψ(v)|2 < ∞
}

(34)

〈ψ1, ψ2〉 =
∑
v∈Lc

ψ1(v)ψ2(v) (35)

and the unitary representation of Gc in l2(Lc) is defined by

g : l2(Lc) −→ l2(Lc) (gψ)[v] = ψ(g−1[v]). (36)

For each κ ∈ (0,∞), the linear operator

H : l2(Lc) −→ l2(Lc) (Hψ)[v] = κ

2∑
j=0

ψ[vj ] (37)

is a self-adjoint Gc-invariant operator.
If k ∈ K is such that 〈k, c〉 ∈ 2πZ then

ei〈k,v〉 = ei〈k,v+jc〉 for any j ∈ Z (38)

and hence, the function

Lc −→ C : [v] �→ e−i〈k,v〉 (39)

is well defined (it does not depend on the representative we choose for [v]). The Hamiltonian
used in the tight-binding description of π bands has the form (37).
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Theorem 1.

(a) For any k such that 〈k, c〉 ∈ 2πZ the numbers ±E(k), where

E(k) = κ|eik0a + eik1a + eik2a|
= κ

√
3 + 2 cos(k0 − k1)a + 2 cos(k1 − k2)a + 2 cos(k2 − k0)a (40)

belong to the spectrum of H.
(b) The bounded functions belonging to an extension of l2(Lc)

ψ±
k : Lc −→ C, ψ±

k [v] = e−i〈k,v〉ϕ±
k [v], (41)

where

ϕ±
k [v] =

{
eiλ(k) if ε(v) = 1
±e−iλ(k) if ε(v) = −1

(42)

and

λ(k) =
{

− 1
2 arg(eik0a + eik1a + eik2a) if eik0a + eik1a + eik2a �= 0

0 if eik0a + eik1a + eik2a = 0
(43)

are eigenfunctions of H corresponding to the eigenvalues ±E(k), that is,

Hψ±
k = ±E(k)ψ±

k . (44)

Proof.

(a) The function ψ : Lc −→ C, ψ[v] = e−i〈k,v〉ϕ[v], where

ϕ[v] =
{
α if ε(v) = 1
β if ε(v) = −1

(45)

and α, β are two constants, satisfies the relation Hψ = Eψ if and only if (α, β) is a
solution of the system of equations{

κ(e−ik0a + e−ik1a + e−ik2a)β = Eα

κ(eik0a + eik1a + eik2a)α = Eβ.
(46)

This system has non-trivial solutions if and only if∣∣∣∣∣ −E κ(e−ik0a + e−ik1a + e−ik2a)

κ(eik0a + eik1a + eik2a) −E

∣∣∣∣∣ = 0, (47)

that is, if and only if E is one of the numbers ±E(k).
(b) If eik0a + eik1a + eik0a �= 0 then the equation κ(eik0a + eik1a + eik2a)α = ±E(k)β leads to

β = ±α
eik0a + eik1a + eik2a

|eik0a + eik1a + eik2a| = ±α e−2iλ(k). (48)

Choosing α = eiλ(k) we get β = ±e−iλ(k), and hence, up to a multiplicative constant, the
solution of Hψ = ±E(k)ψ is ψ = ψ±

k . If eik0a + eik1a + eik0a = 0 then E(k) = 0, and the
functions

ψ±
k [v] = e−i〈k,v〉

{
1 if ε(v) = 1
±1 if ε(v) = −1

(49)

are eigenfunctions. �

The relation 〈k, c〉 ∈ 2πZ defines a family of equidistant straight lines orthogonal to c with
the distance between neighbouring lines equal to 2π/‖c‖.
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Theorem 2.

(a) The function

E : K −→ [0, 3κ] E(k) = κ|eik0a + eik1a + eik2a| (50)

is even and periodic

E(k) = E(−k) E(k) = E(k + b0) = E(k + b1) = E(k + b2) (51)

where

b0 =
(

4π

3a
,−2π

3a
,−2π

3a

)
,

b1 =
(

−2π

3a
,

4π

3a
,−2π

3a

)
,

b2 =
(

−2π

3a
,−2π

3a
,

4π

3a

)
.

(52)

(b) The functions ψk = ψ+
k and ψ−

k are eigenfunctions of � and σ

�ψ±
k = ei〈k,c̃〉ψ±

k σψ±
k = ei〈k,w〉ψ±

k (53)

and satisfy the relation

τψ±
k = ±e−ik0aψ±

−k. (54)

(c) The eigenspaces

Ek = {αψk + βψ−k | α, β ∈ C}
E−

k = {αψ−
k + βψ−

−k | α, β ∈ C} (55)

corresponding to E(k) and −E(k) are Gc-invariant, Ek = E−k and E−
k = E−

−k .
(d) If k is such that E(k) �= 0 then

ψ±
k+bi

= eiπ/3ψ±
k Ek+bi

= Ek (56)

for any i ∈ {0, 1, 2}.
Proof. Since ei4π/3 = e−i2π/3 we have

E(k + b0) = κ|eik0a ei4π/3 + eik1a e−i2π/3 + eik2a e−i2π/3| = E(k).

λ(k + b0) = −1

2
arg[(eik0a + eik1a + eik2a) e−i2π/3] = λ(k) +

π

3
for any k with E(k) �= 0. If v is such that ε(v) = 1 then 〈b0, v〉 = 2πv0 and

ψk+b0 [v] = e−i〈k+b0,v〉 eiλ(k+b0) = e−i〈k,v〉 e−i2πv0 eiλ(k) eiπ/3 = eiπ/3ψk[v].

If v is such that ε(v) = −1 then 〈b0, v〉 = 2πv0 − 2π/3 and

ψk+b0 [v] = e−i〈k+b0,v〉 e−iλ(k+b0) = e−i〈k,v〉 e−i2πv0 ei2π/3 e−iλ(k) e−iπ/3 = eiπ/3ψk[v]. �

From the periodicity of E(k) and Ek it follows that we can restrict our analysis to the case
k ∈ Bc, where

Bc = {k ∈ B | 〈k, c〉 ∈ 2πZ} (57)

and B is the hexagonal domain (see figure 2)

B =
{
k ∈ K

∣∣∣∣−2π

3a
� ki � 2π

3a
for any i ∈ {0, 1, 2}

}
. (58)
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Figure 2. The hexagonal domainB, the points of � (indicated by •) and the points k with E(k) = 0,
called K points (indicated by ◦).

Theorem 3. For even n the space Ek is one dimensional if and only if k ∈ �, where

� =
{
(0, 0, 0),±

(
−2π

3a
,

π

3a
,

π

3a

)
,±

(
π

3a
,−2π

3a
,

π

3a

)
,±

(
π

3a
,

π

3a
,−2π

3a

)}
.

Proof. If Ek is one dimensional then there is a constant C such that

ψ−k[v] = Cψk[v] for any v ∈ Lc.

For v = (0, 0, 0) we get C = e−2iλ(k). Therefore,

ψ−k = Cψk ⇐⇒
{

e2i〈k,v〉 = 1 if ε(v) = 1
e2i〈k,v〉 = C2 if ε(v) = −1.

(59)

Particularly, we must have e2ik0a = e2ik1a = e2ik2a . For k ∈ B this relation is possible only
if there are α, β ∈ {0,±1} such that k1 = k0 + απ/a and k2 = k0 + βπ/a. From k0 + k1 +
k2 = 0 we get

k =
(

−α + β

3

π

a
,

2α − β

3

π

a
,
−α + 2β

3

π

a

)
. (60)

All these points lie on the family of straight lines defined by 〈k, c〉 ∈ 2πZ since

〈k, c〉 = k0c0a +
(
k0 + α

π

a

)
c1a +

(
k0 + β

π

a

)
c2a = (αc1 + βc2)π ∈ 2πZ. (61)

In the case α = β = 0 we get k = (0, 0, 0), ψk[v] = 1 and

�ψk = ψk σψk = ψk τψk = ψk. (62)

In the case α = β = 1 we get k = (−2π/3a, π/3a, π/3a), ψk[v] = (−1)v0 e−iπ/6 and

�ψk = (−1)c̃0ψk σψk = (−1)w0ψk τψk = −ψk. (63)

All the other points k ∈ Bc with dim Ek = 1 can be obtained from the analysed points by using
permutations of coordinates and/or multiplication by (−1). �

In the case when n is odd only a part of the points of � lies on the family of straight lines
defined by 〈k, c〉 ∈ 2πZ.
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5. Two-dimensional representations of Gc

If k ∈ Bc\� then dim Ek = 2 and the matrices of �, σ and τ in the basis {ψk,ψ−k} are

� =
(

ei〈k,c̃〉 0
0 e−i〈k,c̃〉

)
, σ =

(
ei〈k,w〉 0

0 e−i〈k,w〉

)
, τ =

(
0 eik0a

e−ik0a 0

)
. (64)

Theorem 4. For each k ∈ Bc\� the representations of Gc in Ek and E−
k are equivalent. They

are reducible if and only if the numbers 〈k, c̃〉 and 〈k,w〉 belong to Zπ .

Proof. The linear transformation Ek −→ E−
k : αψk + βψ−k �→ iαψ−

k − iβψ−
−k is an

isomorphism of representations. If

P =
(

α β

γ δ

)
is the matrix in the basis {ψk,ψ−k} of the projector corresponding to a Gc-invariant subspace
of Ek then P 2 = P and(

α β

γ δ

) (
ei〈k,c̃〉 0

0 e−i〈k,c̃〉

)
=

(
ei〈k,c̃〉 0

0 e−i〈k,c̃〉

) (
α β

γ δ

)
(65)

(
α β

γ δ

) (
ei〈k,w〉 0

0 e−i〈k,w〉

)
=

(
ei〈k,w〉 0

0 e−i〈k,w〉

) (
α β

γ δ

)
(66)

(
α β

γ δ

) (
0 eik0a

e−ik0a 0

)
=

(
0 eik0a

e−ik0a 0

)(
α β

γ δ

)
. (67)

From the last three relations it follows that

β ei〈k,c̃〉 = β e−i〈k,c̃〉 β ei〈k,w〉 = β e−i〈k,w〉 α eik0a = δ eik0a (68)

γ ei〈k,c̃〉 = γ e−i〈k,c̃〉 γ ei〈k,w〉 = γ e−i〈k,w〉 β e−ik0a = γ eik0a. (69)

Since eik0a �= 0 we obtain α = δ. If either 〈k, c̃〉 �∈ Zπ or 〈k,w〉 �∈ Zπ then β = γ = 0
and the representation (64) is irreducible. If the numbers 〈k, c̃〉 and 〈k,w〉 belong to Zπ then
imposing the condition P 2 = P we obtain

P = 1

2

(
1 eik0a

e−ik0a 1

)
or P = 1

2

(
1 −eik0a

−e−ik0a 1

)
. (70)

These complementary projectors correspond to the decomposition

Ek = {α(ψk + e−ik0aψ−k) | α ∈ C} ⊕ {α(ψk − e−ik0aψ−k) | α ∈ C} (71)

of Ek into direct sum of one-dimensional Gc-invariant subspaces, and

�(ψk ± e−ik0aψ−k) = (−1)m(ψk ± e−ik0aψ−k)

σ (ψk ± e−ik0aψ−k) = (−1)p(ψk ± e−ik0aψ−k)

τ (ψk ± e−ik0aψ−k) = ±(ψk ± e−ik0aψ−k)

(72)

where m,p ∈ Z are such that 〈k, c̃〉 = mπ and 〈k,w〉 = pπ . �

Relations (64) define for each k belonging to the set

Birred
c = {k ∈ Bc\� | 〈k, c̃〉 �∈ Zπ or 〈k,w〉 �∈ Zπ} (73)

a two-dimensional irreducible representation Dc(k). Some of these representations are
equivalent. Particularly, Dc(k) = Dc(−k).
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6. Clebsch–Gordan coefficients

Let k, k′ ∈ Birred
c be such that k+ = k + k′ and k− = k − k′ belong to Birred

c . The direct product
of the representations Dc(k) and Dc(k

′) admits the decomposition

Dc(k) ⊗ Dc(k
′) = Dc(k

+) ⊕ Dc(k
−)

and the matrices corresponding to �, σ and τ are

(
ei〈k,c̃〉 0

0 e−i〈k,c̃〉

)
⊗

(
ei〈k′,c̃〉 0

0 e−i〈k′,c̃〉

)
=




ei〈k+,c̃〉 0 0 0
0 ei〈k−,c̃〉 0 0
0 0 e−i〈k−,c̃〉 0
0 0 0 e−i〈k+,c̃〉




(
ei〈k,w〉 0

0 e−i〈k,w〉

)
⊗

(
ei〈k′,w〉 0

0 e−i〈k′,w〉

)
=




ei〈k+,w〉 0 0 0
0 ei〈k−,w〉 0 0
0 0 e−i〈k−,w〉 0
0 0 0 e−i〈k+,w〉




(
0 eik0a

e−ik0a 0

)
⊗

(
0 eik′

0a

e−ik′
0a 0

)
=




0 0 0 eik+
0 a

0 0 eik−
0 a 0

0 e−ik−
0 a 0 0

e−ik+
0 a 0 0 0


 ,

(74)

respectively. The unitary matrix

M =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 (75)

satisfies the relations

M−1




ei〈k+,c̃〉 0 0 0
0 ei〈k−,c̃〉 0 0
0 0 e−i〈k−,c̃〉 0
0 0 0 e−i〈k+,c̃〉


 M =




ei〈k+,c̃〉 0 0 0
0 e−i〈k+,c̃〉 0 0
0 0 ei〈k−,c̃〉 0
0 0 0 e−i〈k−,c̃〉




M−1




ei〈k+,w〉 0 0 0
0 ei〈k−,w〉 0 0
0 0 e−i〈k−,w〉 0
0 0 0 e−i〈k+,w〉


 M =




ei〈k+,w〉 0 0 0
0 e−i〈k+,w〉 0 0
0 0 ei〈k−,w〉 0
0 0 0 e−i〈k−,w〉




M−1




0 0 0 eik+
0 a

0 0 eik−
0 a 0

0 e−ik−
0 a 0 0

e−ik+
0 a 0 0 0


 M =




0 eik+
0 a 0 0

e−ik+
0 a 0 0 0

0 0 0 eik−
0 a

0 0 e−ik−
0 a 0


 .

(76)

Therefore, the entries of M are Clebsch–Gordon coefficients [11] corresponding to the
considered direct product. In this case, the only non-null coefficients are

(kk′11|k+1) = (kk′12|k−1) = (kk′21|k−2) = (kk′22|k+2) = 1. (77)

More details concerning the Clebsch–Gordon coefficients and their applications in carbon
nanotube physics can be found in the articles of Damnjanović et al [5, 7, 15].
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7. Concluding remarks

The present paper can be regarded as a pure mathematical exercise. We have defined the factor
sets Lc, the groups Gc acting on Lc as groups of permutations, and we have studied certain
representations of these groups defined on some spaces of functions ψ : Lc −→ C. We
have proved that the groups Gc are isomorphic to the symmetry groups of single-wall carbon
nanotubes, and the considered representations are directly related to some representations used
in carbon nanotube physics.

The present paper can also be regarded as presenting an alternative mathematical model
for carbon nanotubes. We think that this alternative approach offers some formal advantages,
namely, certain calculations may be simpler in this approach than in the usual one.
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[6] Damnjanović M, Milos̆ević I, Vuković T and Maultzsch J 2003 Quantum numbers and band topology of

nanotubes J. Phys. A: Math. Gen. 36 5707–17
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